
LECTURE - 18

References : Sumitabha Das

SECTION -D
SHELL PROGRAMMING

References : Sumitabha Das

INTRODUCTION

 Shell programming
 Pattern matching and Wild cards
 Functions
 Shell types
 Shell Variables

INTRODUCTION

• When you log on to a UNIX machine, you first see a prompt.

This prompt remains there until you key in something. Even

though it may appear that the system is idling, a UNIX

command is in fact running at the terminal. But this

command is special ; it’s with you all the time and never

terminates until you logout. This command is shell.

SHELL OFFERINGS
Your UNIX system offers a variety of shells for you to choose from. Over

time, shells have become more powerful by the progressive addition of

new features. The shells we consider in this text can be grouped into

two categories :

• The Bourne family comprising the Bourne shell (/bin/sh) and its

derivatives – the Korn shell (/bin/ksh) and Bash (/bin/bash).

• The C Shell (/bin/csh).

The absolute pathname of the shell’s command file is shown in

parenthesis. Everything that applies to Bourne also applies to its

supersets, Korn and Bash.

PATTERN MATCHING - THE WILD-CARDS
• We begin with the special set of characters that the shell uses to match filenames. We’ve

already used commands with more than one filename as arguments (e.g. cat chap01

chap02).

• Often we may need to enter multiple filenames in a command line. To illustrate this point, try

listing all filenames beginning with chap. The most obvious solution is to specify all the

filenames separately :

$ ls chap chap01 chap02 chap03 chap04 chapx chapy chapz

• If filenames are similar (as above), we can use the facility offered by the shell of representing

them by a single pattern or model. For instance , the pattern chap* represents all filenames

beginning with chap. This pattern is framed with ordinary characters (like chap) and a meta

character (like *) using well defined rules.

• The pattern can then be used as an argument to the command, and the shell will expand it

suitably before the command is executed.

 The metacharacters that are used to construct the generalized pattern for

matching filenames belong to a category called wild-cards(something like

a joker that can match any card).

The Shell’s Wild-Cards

Wild – Card Match

* Any number of characters including none.

? A single character

[ijk] A single character – either an i, j or k

[x-z] A single character that is within the ASCII range of the characters
x and z.

[!ijk] A single character that is not an i, j, or k (Not in C shell).

[!x – z] A single character that is not within the ASCII range of the
characters x and z (Not in C shell.)

(1) THE * AND ?

• Previously we’ve used the command ls chap* to list some filenames beginning
with chap. The metacharacter, * , is one of the characters of the shell’s wild-card
set.

• It matches any number of characters (including none). It thus matches all
filenames specified in the previous command line which can now be shortened in
this way:

$ ls chap *
chap chap01 chap02 chap03 chap04 chapx chapy chapz

• Observe that chap* also matching the string chap. When the shell encounters
this command line, it identifies the * immediately as a wild-card. It then looks in
the current directory and recreates the command line as below from the
filenames that match the pattern chap* :

$ ls chap chap01 chap02 chap03 chap04 chapx chapy chapz

• The shell now hands over t his command to the kernel which uses its process creation
facilities to run the command.

 The next wild-card is ?, which matches a single character.

When used with same string chap (chap?), the shell matches

all five-characters filenames beginning with chap. Appending

another ? Creates the pattern chap??, which matches six-

character filenames. Use both expressions separately, and

the meaning becomes obvious :

$ ls chap?
chapx chapy chapz

$ ls chap??
chap01 chap02 chap03

(2) THE CHARACTER CLASS:
• The pattern framed in previous examples are not very restrictive. With the

knowledge we have, its not easy to list only chapy and chapz. Nor is easy

to match only first four chapters from the numbered list. You can frame

more restrictive patterns with the character class.

• The character class comprises a set of characters enclosed by the

rectangular brackets , [and], but it matches a single character in the

class. The pattern [abcd] is a character and it matches the single

character – an a , b, c or d. This can be combined with any string or

another wild-card expression, so selecting chap01, chap02, chap03 now

becomes a simple matter :

$ ls chap0[123]

chap01 chap02 chap03

 Range specification is also possible inside the class with a – (hyphen) ; the

two characters on either side of it form the range of characters to be

matched. Here are two examples:

$ ls chap0[1-3] Lists chap01, chap02, chap03
$ ls chap[x-z] Lists chapx, chapy, chapz

 Negating the Character Class (!): How about framing a pattern that

reverses the above matching criteria? The solution that we prescribe here

unfortunately doesn’t work with the C- shell, but with the other shells, you

can either use the ! as the first character in the class to negate the class.

The two examples below should make the point clear:

*. [!c o] Matches all filenames with a single-character extension but not the .c or .o

files.

[! a – z A-Z] Matches all filenames that don’t begin with an alphabetic character

General shell functions :
 The UNIX shell program interprets user commands, which are

either directly entered by the user, or which can be read from a file
called the shell script or shell program.

 Shell scripts are interpreted, not compiled.

 The shell reads commands from the script line per line and
searches for those commands on the system, while a compiler
converts a program into machine readable form, an executable file
- which may then be used in a shell script.

 Apart from passing commands to the kernel, the main task of a
shell is providing a user environment, which can be configured
individually using shell resource configuration files.

SHELL TYPES
Just like people know different languages, your UNIX system will usually offer

a variety of shell types:

1. sh or Bourne Shell: the original shell still used on UNIX systems and in
UNIX-related environments. This is the basic shell, a small program with
few features. While this is not the standard shell, it is still available on every
Linux system for compatibility with UNIX programs.

2. bash or Bourne Again shell: the standard GNU shell, sensitive and
flexible. Probably most advisable for beginning users while being at the
same time a powerful tool for the advanced and professional user. On
Linux, bash is the standard shell for common users. This shell is a so-
called superset of the Bourne shell. This means that the Bourne Again shell
is compatible with the Bourne shell: commands that work in sh, also work in
bash. However, the reverse is not always the case.

4. csh or C shell: the syntax of this shell resembles that of the C
programming language. Sometimes asked for by programmers.

5. tcsh or TENEX C shell: a superset of the common C shell, enhancing user-
friendliness and speed. That is why some also call it the Turbo C shell.

6. ksh or the Korn shell: sometimes appreciated by people with a UNIX
background. A superset of the Bourne shell; with standard configuration a
nightmare for beginning users.

(Briefs about GNU O.S. :- GNU is a Unix-like operating system created and funded
by the Free Software Foundation. One of the goals of the Free Software
Foundation was an operating system composed entirely of free software. Many
pieces, such as shells, utilities, and compilers were created for this purpose. The
GNU operating system has yet to be fully completed, due to slow development
and debates about design goals. Most of the programs created for GNU have
been ported to other kernels and operating systems, most notably Linux.)

 The file /etc/shells gives an overview of known shells on a Linux system:

xyz:~>cat /etc/shells

/bin/bash

/bin/sh

/bin/tcsh

/bin/csh

 To switch from one shell to another, just enter the name of the new shell
in the active terminal. The system finds the directory where the name
occurs using the PATH settings, and since a shell is an executable file
(program), the current shell activates it and it gets executed. A new
prompt is usually shown, because each shell has its typical appearance:

xyz:~> tcsh

[xyz@post21 ~]$

The Bourne shell programming:
Unix runs Bourne shell scripts when it boots. If you want to modify the

boot-time behavior of a system, you need to learn to write and modify
Bourne shell scripts.

What's it all about?
First of all, what's a shell? Under Unix, a shell is a command interpreter.

That is, it reads commands from the keyboard and executes them.
Furthermore, you can put commands in a file and execute them all at
once. This is known as a script. Here's a simple one:

#!/bin/sh # Rotate procmail log files

cd /homes/arensb/Mail

rm procmail.log.6 # This is unnecessary

mv procmail.log.5 procmail.log.6

mv procmail.log.4 procmail.log.5

mv procmail.log.3 procmail.log.4

mv procmail.log.2 procmail.log.3

mv procmail.log.1 procmail.log.2

mv procmail.log.0 procmail.log.1

mv procmail.log procmail.log.0

There are several things to note here: first of all, comments begin with a hash (#)
and continue to the end of the line

 Secondly, the script itself is just a series of commands. I use this script to rotate log
files, as it says. I could just as easily have typed these commands in by hand, but
I'm lazy, and I don't feel like it. Plus, if I did, I might make a typo at the wrong
moment and really make a mess.

#!/bin/sh

 The first line of any script must begin with #!, followed by the name of the interpreter.

 A script, like any file that can be run as a command, needs to be executable: save
this script as rotatelog and run

$ chmod +x rotatelog

to make it executable. You can now run it by running

$./rotatelog

Unlike some other operating systems, Unix allows any program to be used as a script
interpreter. This is why people talk about ``a Bourne shell script'' or ``an awk script.''
One might even write a more script, or an ls script (though the latter wouldn't be
terribly useful). Hence, it is important to let Unix know which program will be
interpreting the script.

 When Unix tries to execute the script, it sees the first two
characters (#!) and knows that it is a script. It then reads the rest of
the line to find out which program is to execute the script. For a
Bourne shell script, this will be /bin/sh. Hence, the first line of our
script must be

#!/bin/sh

 After the command interpreter, you can have one, and sometimes
more, options.

 Once Unix has found out which program will be acting as the
interpreter for the script, it runs that program, and passes it the
name of the script on the command line.

 Thus, when you run ./rotatelog, it behaves exactly as if you had

run /bin/sh ./rotatelog.

SHELL VARIABLES:
 sh allows you to have variables, just like any programming languages. Variables do

not need to be declared. To set a sh variable, use

VAR=value
and to use the value of the variable later, use

$VAR or

${VAR}
The latter syntax is useful if the variable name is immediately followed by other text:

#!/bin/sh COLOR=yellow
echo This looks $COLORish
echo This seems ${COLOR}ish
prints
This looks
This seems yellowish
There is only one type of variable in sh: strings. This is somewhat limited, but is

sufficient for most purposes.

LOCAL VS. ENVIRONMENT VARIABLES
 A sh variable can be either a local variable or an

environment variable. They both work the same way; the
only difference lies in what happens when the script runs
another program (which, as we saw earlier, it does all the
time).

 Environment variables are passed to subprocesses. Local
variables are not.

 By default, variables are local. To turn a local variable into an
environment variable, use

export VAR

HERE'S A SIMPLE WRAPPER FOR A PROGRAM:
#!/bin/sh

NETSCAPE_HOME=/usr/imports/libdata

CLASSPATH=$NETSCAPE_HOME/classes

export CLASSPATH

$NETSCAPE_HOME/bin/netscape.bin

Here, NETSCAPE_HOME is a local variable; CLASSPATH is an
environment variable. CLASSPATH will be passed to netscape.bin
(netscape.bin uses the value of this variable to find Java class files);
NETSCAPE_HOME is a convenience variable that is only used by the
wrapper script; netscape.bin doesn't need to know about it, so it is kept
local.

The only way to unexport a variable is to unset it:

unset VAR

APPLICATIONS

 Many shell script interpreters double as command
line interface, such as the various Unix shells,
Windows PowerShell or the MS-DOS
COMMAND.COM. Others, such as AppleScript or
the graphical Windows Script Host (WScript.exe),
add scripting capability to computing environments
without requiring a command line interface. Other
examples of programming languages primarily
intended for shell scripting include DCL and JCL.

RESEARCH

 Shell-Storm.org is a development organization
based on GNU/Linux systems that provide free
projects and source codes. Shell-storm.org
provides useful information to people who perform
security testing.

 Title: Easy way to bypass randomization by
chaining ret2ret and ENVAR (without
NX) Language: English Author: Florian Gaultier
(agix) (twitter) Date 2011-04-28

 Website : http://research.shell-
storm.org/files/research-12-en.php

http://research.shell-

